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The diffraction of long cylindrical waves by a circular island situated in a rota- 
ting tank is considered. It’is shown that, when the wavelength is small in com- 
parison with the island radius, a resonanace capture of waves by the island takes 

place. Unlike in the author’s paper [ 11 which analyzed the diffraction of mono- 
chromatic plane waves by a circular island in a rotating tank of constant depth, 

here the diffraction of cylindrical waves produced by a source at the island 
boundary is considered, As in Cl], the wavelength is assumed to be considerable 
in comparison with the depth of the tank, but small relative to the island radius. 
A solution in the form of a conventional slowly convergent Fourier series is first 
derived, and then transformed by Watson’s method into a fast convergent series, 

which makes it possible.to determine the pattern of wave diffraction, at least 

along the island periphery. Many details of the derivation of solution have been 
omitted here. One of these details can be found in (1, 2’j1 while others may be 
obtained by small alterations in the calculations presented in those papers. 

1, Stat~mo~t of problem, Fourier ssrlsr for ths alrvrtfon of 
fluf d s A horizontally unbounded tank filled with a heavy perfect fluid rotates at 
angular velocity o in a counterclockwise direction about a vertical axis. Depth of the 
tank is throughout uniform and equal h.The tank contains a source generating cylindrical 
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waves at frequency CT > 20 and an “island” - a rigid circular cylinder of radius a - 
with its axis parallei to the tank axis of rotation. Let us examine the motion of fluid 
along the island periphery, and begin by assuming that the source of waves lies outside 
the island periphery at a distance b from the island center. We then consider the case 

in which the source is right up the island periphery, i. e., we effect the transition to 
limit b --t U. 

We introduce a polar system of coordinates p, 8 in the plane in which tk surface of 
fluid would lie in the absence of tank rotation and wave sources. We locate the pole at 

the point of intersection of this plane with the cylinder axis, i. e., at the island center, 

and draw the polar axis through the source. 

6) ebt and by & (p, 
We denote the elevation of fluid by 5 (p, 

6)e iat that of its part which is due exclusively to the effect of the 
source without allowance for the reflection of waves by the island. 

Function c1 (p, 0) is of the form 

51 (0, 0) = AH,,@) (z), 2 = 5c (p” + bP - 2pb cos tl)“, x = ( “--y y” 

where A is the amplitude of waves produced by the source, H,,(@ (2) is the Hankel 
function of the second kind and order zero, and g is the acceleration of gravity. 

Function 5 (p, 0) must be a solution of equation 

-$-+$$++-$-+X2:=0_ for p>o 

satisfy at the cylinder rigid wall the condition 

x 2io ac 
p----,-=0 for p=a 

drl 

(1.1) 

V.2) 

and at point (b, 0) have the same singularity as Cl. Furthermore, the conditions of 
Sommerfeld radiation must be satisfied by the remainder 

52 = 5 - 51 

Let us rewrite c1 (p, 0) as follows: 

i 

J (xp) Ed’) (xb), 

& (P* e> = A ii ei”e Jo (q $&,) 
p < b 

n-00 11 * ’ 
p> b 

where J, (Z) is a Bessel function, and seek ?& (p, 6) in the form 

5, (P, 0) - A jj B,H?’ (xp) eine 
*=-CO 

Each term of this series satisfies Eq. (1.1) and the conditions of radiation. From condi- 

tion (1.2) we f;d “al H,(Zj (xb) 

n (I, (4 

I) (Y) = p vH,(2) (xa) + xa 
aH,(2) (xa) 

&a 

Setting 51 (p, 0) and adding c2 (p, 0) to p = a, we obtain 
cc 

j (a, 0) = - 2g 2 
q2) (XL) 

ll=_oj $ (4 ez”” (1.3) 
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Series (I. 3) is obviously absolutely convergent, when b > e, and the convergence in 
any interval br < b & bs,where 4 > a is uniform. 

To investigate the case of a riparian source it is necessary to make 6 tend to a and 
find the limit of the right-hand part of (1.3). One can hardly expect to find this limit 

by passing to limit for each term of series (1.3). since for large 1 n \ and b equal Q 
these terms behave as eine/n, hence it is not even clear whether thisSeries is conver- 

gent, Because of this we leave for the time being the case of the riparian source, and 
shall consider b to be positively greater than a. 

The convergence rate of series (1.3) depends on parameters xlr and 20/a. Wnen x4 
is small and the ratio 20/c not too close to unity, the series rapidly converges. If, 

on the other hand, xu is considerable, the rate of convergence is slow, and in summating 

the series it is necessary to take more than 2xa terms, which is the case in our problem. 

Indeed, the ratio of the ratio of the island radins to the length of waves produced by the 

source is, by assumption, considerable and ?ca is equal to this ratio muitip~ed by 2% . 
We use the Watson method f3, 4] for investigating the slowly convergent series (1.3) 

and, first, consider the distribution of zeros of function \p (v) in plane v. 

2, On the $eto# of function 4 (v). Since % (V) is an entire function, it 
has an infinite number of zeros. That all of these are complex is shown in [l], where 
formulas derived on the assumption of constant nonzero parameter 20/o and %UZ > 5, 
are presented. Here we consider the case of constant xa > 1, and of parameter 2oia 

varying from zero to unity. As in Cl]. the whole of plane is divided into a number of 
regions, each of which is considered separately. 

In “remote” regions of plane v, such that 

I v I>> max (xa, In (t - 204) 

the zeros of function 9 (V) are defined, as in [l], by formulas 

++o($$)] I 8=-N, N-!-i,... (N*I) 

Among the remaining zeros of function 9 (v) of considerable interest are those which 
have least absolute values of their imagina~ parts. Below we deal only with zeros of 
that kind. 

In the “transition” region of the right-hand half-plane defined by formulas 

v _ 2-%&=izv’l’ = $@ 
t Y=XU-2 -“*e-*/*l”fa (@% +_ () (1) (2.2) 

where z is a complex number satisfying the only one condition 1 z 1 < (~a)‘~*~ and the 
Hankel functions H,c2) (WC&) are expressed in terms of Airy function Ai (2) . The deter- 
mination of zeros of function 9 (v) is now reduced to determining 2 from the equation 

(2.3) 

Let us narrow the region of variation of parameter 20/a and assume that one of the 
inequalities 

0 < 20 / Q =sg (xa)-” (2.4) 
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holds. 

If the inequality (2.4) is valid, the solution of Eq. (2.3), for which 9 derived by 
formula (2.2) have least absolute values of their imaginary parts, can be sought in the 
form of expansions 

d,-l=b,+c*e+d*ea+.*., ~=2~/~~~~)~/*, nzsz1,2,...,N (2.6) 

where b, are zeros of function Ai’ numbered in the ascending order of their abso- 
lute values and cnr d, etc. are unknown coefficients. 

The substitution of expansions (2.6) into (2.3) yields c, = 2-‘l@/*ni&-f hence 

G-1 = Pn - %i7n, n = 1, 2, . . .s N 

l-42 = [xa + 2-‘1”(~u)%(- b,)J [f + o(i)] (2.71 

gn = 2-“‘3” (xa)” (- b,,) 11 + o (1) J 

The zeros in the transition region of the left-hand half-plane with conditi_on (2.4) satis- 
fied are defined by formula 

y += n - Pn 4- &W n = 1, 2, . . .) N (2.8) 

It wilf be seen from (2.7) and (2.8) that in the “transition” regions the imaginary parts 
of zeros of function 9 (v) are of the order of (~a)%. In other regions of plane v with 
condition (2.4) satisfied there are no zeros with smaller in absolute value imaginary 

parts. 
If inequalities (2.5) are satisfied, then a procedure similar to that described above 

yields formulas 

ynf = T r, & is,, n = 1. 2,. L .t Af 

r, = [aa + 2-“1’(xa)” (- a,)1 [I + 0 (f)l (2.9) 

.s, = 2-‘/‘3” (xa)” (- a,) 11 + 0 (1) I 

where a, denote zeros of function Ai (F) numbered in the ascending order of their ab- 
solute values. 

When inequality (2.5) is satisfied, function 9 (v) has one more zero, namely 9,- 
whose imaginary part is small in comparison with the imaginary parts of zeros v$ . 

This zero lies in that part of plane v in which the asymptotic Debye formulas apply to 

Hankel functions. If we assume v = NZ cb Yt then in that region Hey < 0 and 0 < 
< ImY < l/an, and for considerable values of the argument the Hankel functions are 
expressed in terms of exponents 

.&fY. W, f (r. x4 =xa(shr-y&r) 

Only exponen ef(Y*Xa) was considered in [l], where by means of series expansion in powers 
of parameter (Xa) -l-the real part of the zero va- was found to be 

Rev,=+- ($)‘]+‘+$++_) (2.10) 

The imaginary part Im v o-of this zero proved to be infinitely small, of an order of 
smallness higher than that of &@)-’ 
ined in [Xl. If, however, fm Vi- 

in any positive integral power. It was not determ- 
is sought as an expansion in the following powers: 
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and in the Debye expansions both exponents are retained, then for IIIl’Ua- we obtain 
the expression 

(2.U) 

f (rot x4 = xa[i- (f,“]-“~(arth~-~)+~arth~+O(~) 

Expression (2.11) can only be obtained, if the suppiement~ condition 

I-- 20 I CI > (xa)-l (2.12) 

is satisfied, but unfortunately less exactly than for the remaining zeros v,,f. 
The inequalities (2.4) and (2.5) are not valid for those values of parameter 20 f (3 

which lie in the vicinity of 20 / o = (%a)-’ hand for which it would be hardly possible 

to determine the zeros of function 21, (v) without resorting to methods of numerical ana- 

lysis. 

3, Rapidly converging rsrlaa for wave elevation, Let us revert to 
formula (X.3) and, following Watson’s method, substitute in it an integral for its right- 

hand side series. By analogy to [l] we obtain 

where L,: is a straight line connecting in the complex plane v points (,A co, _ t-04 
and (T 00, &ip) , where p is a positive 

number sufficiently small for any zeros of func- 

tion 9 (v) to be absent between Lr and L, . 
Let us calculate the integral (3.1) by the res- 

idues in the zeros of function 11, (v). To do this 
i we close the straight lines L, and L2 by sequ- 

ences of curves C,+ and C,-, respectively. 
As the c,’ curve in the sector ‘l.$C < 

&argv &Y,st + A,where Q( A<+ z, 
‘J we take arcs of curves r,’ defined, as in [I]. 

%I II -“I?2 by the equation 

Fig. 1. 

Im[Y (hv- In? -JCi)] s m-c, m=M,M+k... (M>)U 

The remaining parts of curves are made up of straight line segements, as shown in Fig. 1, 

where n,,, = i% (-iii,,,) - ‘/%. For C,- we take curves symmetric to Cm+ about the co- 

ordinate origin. 
We denote the absolute value of the integrand of (3.1) by F (v) , and by IIf the 

set of straight-line segments reaching cf. Along r$ and I& we have for F (v) 

the following estimates: 
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I 
exp(-9Imv-Rev~((b/u)], v E rtn+ 

F(v)GC 
erpf(Zrs-0)Imv+ RevIn(b/a)J, VEr,” 
erp[--8Imv-(RevJln(b/a)], vEzn,+ (3.2) 

exp[(2n-_)Imv-_RRev)ln(b/a)j, Van,- 

(Here and in the following C denotes positive constants). 
These estimates were obtained by the method described in detail in r2] with inequalities 

taken into account, 

The estimates for the lengths t (I’,) and 1 (fir,,) (see [l]) are: 

2 En) G 1/2 I GA 1, wL)a-&nI (3.3) 

Let us assume that angle ti is contained in the interval 

e<6sg2?c-E, o<e<n (3.4) 

From the inequalities (3.2) and (3,3) then follows that sequences of integrals of the kind 
of.(3.3) tend to zero along curves 6” ,,, , when m is indefinitely increased. This means 
that the inte 

Q 
al (3.1) along lines 1;, and L, can be reduced to the sum of residues in 

the zeros v,- of function li, (v) and we may consequently write 
m 

(3.5) 

The terms of this series whose order exceeds a certain sufficiently high natural number 
N are defined for v = ~2 to within infinitely small magnitudes by formula 

L+ - - i [( 1 - $) Y,+ In vn+l-’ exp (iv,+8 - Y,+ In % j (3.6) - 

For V = v,- the terms of this series are defined by a formula derived from (3.6) by 
the substitution of V,- for V,+ , 22~ - 8 for 8 and -20 I Ufor20 / 0. If a < 

< b < bl is assumed and formulas (2.1) taken into account, it becomes possible to 
establish that the absolute values of the Nth order terms of series (3.5) are smaller than 
the corresponding terms of series 

cs ${exp[- E-w)]+ ex+~t2n- 0 +q]i (3.7) 
7%-N 

6 4 min (6, 2rc - 0) 

For angles 8 comprised in the interval (3.4) series (3.7) is convergent. Hence for these 

angles series (3.5) is also convergent and, with respect to b within the segment [u, b,I 

it is uniformly convergent. 
In the case of a riparian source, which henceforth will be dealt with, it is possible to 

pass in the series (3.5) to the limit b --f @ term by term, and set b = a. The basic 
contribution to the sum of series thus derived is provided by the terms which correspond 
to the v,” zeros with the least in absolute value imaginary parts. 

Ef parameter 20 / CI satisfies the inequality (2,4), the zeros v,f which have the 

above properties are defined by formulas (2.7) and (2.8) and the approximate expression 
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for 5 (a, 8) is of the form 

If, however, parameter 2~ / o satisfies inequalities (2.5) and (2,12), the zeros Vf 

with the least in absolute value imaginary parts are determined by formulas (2.9) - (2.11) 
while the approximate expression for t (a, 0) is written as 

Real parts of the power of exponents in (3.8) and (3,9) are proportional to qn and s, 
defined by formulas (2.7) and (2.9). Parameters Q,, and sn are also pro~rtional to 

(WZ)‘~* and to the positive numbers --b, and -U, For n < 5 these numbers increase 

approximately by unity with increasing n by unity. For n > 5 the numbers -a, and 
--b, increase with increasing n approximately as n”‘. Consequently for considerable 

%a the values Q,, and s, rapidly increase with increasing n. If it is further assumed 
that the inequalities 

e,(Bsg2n-E, (~U)_~‘~ < e < in! (3.10) 

are satisfied, then the absolute values of terms in the summations (3.8) and (3.9) are 
rapidly decreasing with increasing n,. 

Thus the slowly convergent Fourier series at considerable ~(1 has been transformed 

into the rapidly convergent series (3.8) and (3.9). 

4, Phytlcrl fnmrpxstrtion of retult8. Formulas (3.8) and (3.9) make 
it possible to obtain a clear picture of the wave motions of fluid along the island peri- 

phery and then trace how these motions are affected by the rotation of the tank. 
Formula (3.8) applies to the case of slow or altogether absent rotation of the tank. 

The exponents of this formula define conventional diffracted waves which appear to 
radiate from the point 6 = 0 and flow around the island in clock- and counterclock- 
wise directions. The amplitude of these waves rapidly diminishes with increasing dist- 

ance from point 0 = O.The diffraction pattern closely resembles that of diffraction of 
short electromagnetic waves by a dipole on the surface of a perfectly conducting cylinder, 

For faster tank rotation formula (3.9) is applicable. It will be seen from it that along- 
side the conventional rapidly attenuated diffraction waves, a separate wave, defined 
by the first term in the right-hand side of formula (3.9) circulates around the island in 

a clockwise direction, virtually without attenuation, since according to (2.10) and (2.11) 

the inequalities Re v,,- > 0 and 1 Im vo- 1 (( 1. The amplitude of this particular 

wave, owing to the presence of sin v,,-lt in the denominator of formula (3.9). may 
prove to be very great, if the relationship Re Y~-=N, where N is a natural number 
exceeding xa by at least a factor of (~a)*~~. 

Thus, as in the case of plane waves, a resonance capture by the island of waves ema- 
nating from a source takes place, 

In off-resonance modes the amplitude of this particular wave increases with increase- 
ing &o/o in the case of diffraction of waves generated by a source, and decreases in 
that of plane waves. 
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Nonlinear propagation of disturbances is examined in reacting mixtures where 
the change of composition is determined by the course of a single chemical 

reaction. Depending on the relationship between macroscopic time and relax- 
ation time, we distinguish two basic types of processes: quasi-frozen and quasi- 
equilibrium. Media are examined also, in which the frozen and equilibrium 

speeds of sound are nearly equal in magnitude. Solutions are constructed for 

asymptotic equations which describe the flow parameters behind shock fronts 

and in expansion waves. A mathematical analogy is formulated for the effect 
of rates of chemical reactions, the effect of “longitudinal viscosity”, and the 

effect of thermal conductivity on the structure of the perturbed field. 

1, Initial cqurrfoIlt. It will be assumed that in the flow of chemically active 
gas mixture only one reaction takes place. The change in the composition of the mixture 

is then characterized by a single parameter 9 which is called completeness of reaction. 

The equations of motion of the mixture are taken in the form [l] 

Here t is the time, r is the distance from the plane, axis or center of symmetry, u 
is the velocity, p is the density, p is the pressure, s is the specific entropy, 2 is the 

temperature, Q and Q are the rate and affinity of chemical reaction. The parameter 
V =2 1, 2, 3 for flows with a plane, axis or center of symmetry, respectively. 

In order to close the system it is necessary to introduce three additional equations 
which connect therm~ynamic functions p, p, pI s. 0 and According to the Gibbs 

relationship the increase in specific internal energy e is 


